Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 870974, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574124

RESUMO

Phytochrome (PHY)-mediated light and temperature perception has been increasingly implicated as important regulator of fruit development, ripening, and nutritional quality. Fruit ripening is also critically regulated by chromatin remodeling via DNA demethylation, though the molecular basis connecting epigenetic modifications in fruits and environmental cues remains largely unknown. Here, to unravel whether the PHY-dependent regulation of fruit development involves epigenetic mechanisms, an integrative analysis of the methylome, transcriptome and sRNAome of tomato fruits from phyA single and phyB1B2 double mutants was performed in immature green (IG) and breaker (BK) stages. The transcriptome analysis showed that PHY-mediated light perception regulates more genes in BK than in the early stages of fruit development (IG) and that PHYB1B2 has a more substantial impact than PHYA in the fruit transcriptome, in both analyzed stages. The global profile of methylated cytosines revealed that both PHYA and PHYB1B2 affect the global methylome, but PHYB1B2 has a greater impact on ripening-associated methylation reprogramming across gene-rich genomic regions in tomato fruits. Remarkably, promoters of master ripening-associated transcription factors (TF) (RIN, NOR, CNR, and AP2a) and key carotenoid biosynthetic genes (PSY1, PDS, ZISO, and ZDS) remained highly methylated in phyB1B2 from the IG to BK stage. The positional distribution and enrichment of TF binding sites were analyzed over the promoter region of the phyB1B2 DEGs, exposing an overrepresentation of binding sites for RIN as well as the PHY-downstream effectors PIFs and HY5/HYH. Moreover, phyA and phyB1B2 mutants showed a positive correlation between the methylation level of sRNA cluster-targeted genome regions in gene bodies and mRNA levels. The experimental evidence indicates that PHYB1B2 signal transduction is mediated by a gene expression network involving chromatin organization factors (DNA methylases/demethylases, histone-modifying enzymes, and remodeling factors) and transcriptional regulators leading to altered mRNA profile of ripening-associated genes. This new level of understanding provides insights into the orchestration of epigenetic mechanisms in response to environmental cues affecting agronomical traits.

2.
Plant J ; 105(4): 907-923, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33179365

RESUMO

Tocochromanols constitute the different forms of vitamin E (VTE), essential components of the human diet, and display a high membrane protectant activity. By combining interval mapping and genome-wide association studies (GWAS), we unveiled the genetic determinants of tocochromanol accumulation in tomato (Solanum lycopersicum) fruits. To enhance the nutritional value of this highly consumed vegetable, we dissected the natural intraspecific variability of tocochromanols in tomato fruits and genetically engineered their biosynthetic pathway. These analyses allowed the identification of a total of 25 quantitative trait loci interspersed across the genome pinpointing the chorismate-tyrosine pathway as a regulatory hub controlling the supply of the aromatic head group for tocochromanol biosynthesis. To validate the link between the chorismate-tyrosine pathway and VTE, we engineered tomato plants to bypass the pathway at the arogenate branch point. Transgenic tomatoes showed moderate increments in tocopherols (up to approximately 20%) and a massive accumulation of tocotrienols (up to approximately 3400%). Gene expression analyses of these plants reveal a trade-off between VTE and natural variation in chorismate metabolism explained by transcriptional reprogramming of specific structural genes of the pathway. By restoring the accumulation of alpha-tocotrienols (α-t3) in fruits, the plants produced here are of high pharmacological and nutritional interest.


Assuntos
Ácido Corísmico/metabolismo , Solanum lycopersicum/metabolismo , Vitamina E/análise , Mapeamento Cromossômico , Frutas/química , Frutas/metabolismo , Genes de Plantas/genética , Engenharia Genética , Loci Gênicos , Variação Genética , Estudo de Associação Genômica Ampla , Solanum lycopersicum/química , Solanum lycopersicum/genética , Redes e Vias Metabólicas/genética , Plantas Geneticamente Modificadas , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Tirosina/metabolismo , Vitamina E/metabolismo
3.
Plant Physiol ; 183(3): 869-882, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32409479

RESUMO

Changes in environmental temperature influence many aspects of plant metabolism; however, the underlying regulatory mechanisms remain poorly understood. In addition to their role in light perception, phytochromes (PHYs) have been recently recognized as temperature sensors affecting plant growth. In particular, in Arabidopsis (Arabidopsis thaliana), high temperature reversibly inactivates PHYB, reducing photomorphogenesis-dependent responses. Here, we show the role of phytochrome-dependent temperature perception in modulating the accumulation of isoprenoid-derived compounds in tomato (Solanum lycopersicum) leaves and fruits. The growth of tomato plants under contrasting temperature regimes revealed that high temperatures resulted in coordinated up-regulation of chlorophyll catabolic genes, impairment of chloroplast biogenesis, and reduction of carotenoid synthesis in leaves in a PHYB1B2-dependent manner. Furthermore, by assessing a triple phyAB1B2 mutant and fruit-specific PHYA- or PHYB2-silenced plants, we demonstrated that biosynthesis of the major tomato fruit carotenoid, lycopene, is sensitive to fruit-localized PHY-dependent temperature perception. The collected data provide compelling evidence concerning the impact of PHY-mediated temperature perception on plastid metabolism in both leaves and fruit, specifically on the accumulation of isoprenoid-derived compounds.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Temperatura Alta , Fitocromo/metabolismo , Plastídeos/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Terpenos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas
4.
Bioinformatics ; 35(11): 1931-1939, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30357313

RESUMO

MOTIVATION: Heterogeneous and voluminous data sources are common in modern datasets, particularly in systems biology studies. For instance, in multi-holistic approaches in the fruit biology field, data sources can include a mix of measurements such as morpho-agronomic traits, different kinds of molecules (nucleic acids and metabolites) and consumer preferences. These sources not only have different types of data (quantitative and qualitative), but also large amounts of variables with possibly non-linear relationships among them. An integrative analysis is usually hard to conduct, since it requires several manual standardization steps, with a direct and critical impact on the results obtained. These are important issues in clustering applications, which highlight the need of new methods for uncovering complex relationships in such diverse repositories. RESULTS: We designed a new method named Clustermatch to easily and efficiently perform data-mining tasks on large and highly heterogeneous datasets. Our approach can derive a similarity measure between any quantitative or qualitative variables by looking on how they influence on the clustering of the biological materials under study. Comparisons with other methods in both simulated and real datasets show that Clustermatch is better suited for finding meaningful relationships in complex datasets. AVAILABILITY AND IMPLEMENTATION: Files can be downloaded from https://sourceforge.net/projects/sourcesinc/files/clustermatch/ and https://bitbucket.org/sinc-lab/clustermatch/. In addition, a web-demo is available at http://sinc.unl.edu.ar/web-demo/clustermatch/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Mineração de Dados , Análise por Conglomerados , Padrões de Referência
5.
Arch Virol ; 163(1): 291-295, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29052058

RESUMO

A rhabdovirus infecting maize and wheat crops in Argentina was molecularly characterized. Through next-generation sequencing (NGS) of symptomatic leaf samples, the complete genome was obtained of two isolates of maize yellow striate virus (MYSV), a putative new rhabdovirus, differing by only 0.4% at the nucleotide level. The MYSV genome consists of 12,654 nucleotides for maize and wheat virus isolates, and shares 71% nucleotide sequence identity with the complete genome of barley yellow striate mosaic virus (BYSMV, NC028244). Ten open reading frames (ORFs) were predicted in the MYSV genome from the antigenomic strand and were compared with their BYSMV counterparts. The highest amino acid sequence identity of the MYSV and BYSMV proteins was 80% between the L proteins, and the lowest was 37% between the proteins 4. Phylogenetic analysis suggested that the MYSV isolates are new members of the genus Cytorhabdovirus, family Rhabdoviridae. Yellow striate, affecting maize and wheat crops in Argentina, is an emergent disease that presents a potential economic risk for these widely distributed crops.


Assuntos
Genoma Viral , Doenças das Plantas/virologia , Rhabdoviridae/genética , Triticum/virologia , Zea mays/virologia , Argentina , Filogenia
6.
Front Plant Sci ; 8: 766, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28539933

RESUMO

Plant reoviruses are able to multiply in gramineae plants and delphacid vectors encountering different defense strategies with unique features. This study aims to comparatively assess alterations of small RNA (sRNA) populations in both hosts upon virus infection. For this purpose, we characterized the sRNA profiles of wheat and planthopper vectors infected by Mal de Río Cuarto virus (MRCV, Fijivirus, Reoviridae) and quantified virus genome segments by quantitative reverse transcription PCR We provide evidence that plant and insect silencing machineries differentially recognize the viral genome, thus giving rise to distinct profiles of virus-derived small interfering RNAs (vsiRNAs). In plants, most of the virus genome segments were targeted preferentially within their upstream sequences and vsiRNAs mapped with higher density to the smaller genome segments than to the medium or larger ones. This tendency, however, was not observed in insects. In both hosts, vsiRNAs were equally derived from sense and antisense RNA strands and the differences in vsiRNAs accumulation did not correlate with mRNAs accumulation. We also established that the piwi-interacting RNA (piRNA) pathway was active in the delphacid vector but, contrary to what is observed in virus-infected mosquitoes, virus-specific piRNAs were not detected. This work contributes to the understanding of the silencing response in insect and plant hosts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...